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Since their first discovery, investigations of colorectal cancer stem cells (CSCs) have revealed some unex-
pected properties, including a high degree of heterogeneity and plasticity. By exploiting a combination of
genetic, epigenetic, and microenvironmental factors, colorectal CSCs metastasize, resist chemotherapy,
and continually adapt to a changing microenvironment, representing a formidable challenge to cancer erad-
ication. Here, we review the current understanding of colorectal CSCs, including their origin, relationship to
stem cells of the intestine, phenotypic characterization, and underlying regulatory mechanisms. We also
discuss limitations to current preclinical models of colorectal cancer and how understanding CSC plasticity
can improve the development of clinical strategies.
Introduction
Colorectal cancer (CRC) is the third leading cause of cancer

death in the industrialized world. Although the occurrence of

CRC has begun to decline in the wealthiest countries, the rate

of incidence still maintains a steep increase in the developing

world (WHO, 2014). Twenty-four years have passed since the

seminal discovery of genetic alterations associated with ade-

noma-carcinoma progression (Fearon and Vogelstein, 1990).

Since then, genomic and epigenomic approaches as well as

transgenic mouse models have led to impressive insights into

the nature of CRC, revealing unpredicted layers of complexity.

New determinants of heterogeneity have been recognized to

exist across individual CRC patients (intertumoral heteroge-

neity), which calls for a shift in cancer treatment toward more

personalized therapies (De Sousa E Melo et al., 2013a). Surpris-

ingly, intertumoral heterogeneity has been shown to rely on pat-

terns of gene expression and methylation rather than on genetic

factors, leading to novel CRC classifications that may profoundly

affect future clinical practice (De Sousa E Melo et al., 2013a;

Sadanandam et al., 2013). In parallel, our knowledge regarding

the complexity within the same tumor (intratumoral heterogene-

ity) is continuing to increase. Intratumoral heterogeneity was first

recognized in CRC more than 2 decades ago with the discovery

that multiple clones bearing different genetic mutations exist

within the same tumor (Wersto et al., 1991). Recently, even

genetically identical CRC cells have been shown to display intra-

clonal heterogeneity in terms of proliferation and therapeutic

tolerance (Kreso et al., 2013), indicating that epigenetic factors

crucially contribute to defining the functional properties of tumor

propagation and therapy resistance. The discovery of colorectal

cancer stem cells (CSCs) exposed a further layer of intratumoral

heterogeneity by revealing the existence of tumor cells charac-

terized by markers of immature cells and by an increased ability

to self-renew, resist chemotherapy, and seed secondary tumors

(O’Brien et al., 2007; Ricci-Vitiani et al., 2007; Todaro et al., 2007,

2014). CSCs were initially considered a population with well-

defined phenotypic and molecular features. However, accumu-
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lating evidence suggests instead that CSCs are a dynamic

population continuously shaped by a convergence of genetic,

epigenetic, and microenvironmental factors (Kreso and Dick,

2014). In this scenario, our view of colorectal CSCs is facing a

profound transformation, in parallel with a rapidly evolving

concept of stemness itself, both in cancer and in normal stem

cells. Stemness is increasingly viewed not only as a cell-intrinsic

characteristic but rather as a property of cell populations that is

highly dependent on contextual conditions (MacArthur, 2014;

MacArthur and Lemischka, 2013; Sánchez Alvarado and Yama-

naka, 2014). In accordance with this view, traditionally opposite

effects such as stochastic and deterministic, genetic and

epigenetic, and cell-intrinsic and population factors can all be re-

garded as cooperating forces that contribute to stemness deter-

mination and ultimately to the functional diversity of single tumor

cells (Figure 1). Based on these advancements, this Review will

focus on the evolving concept of colorectal CSCs, which in

very recent years has been characterized by unexpected discov-

eries and unresolved questions. Particular emphasis will be

placed on recent studies that have revolutionized previous the-

ories on CSCs derivation, phenotype, and function and on the

clinically relevant implications of such discoveries. In fact, the

finding that CSC profiles are highly prognostic for CRC patients

(de Sousa EMelo et al., 2011; Merlos-Suárez et al., 2011; Todaro

et al., 2014) has reinforced the hypothesis that colorectal tumor-

igenesis is strongly linked to the presence of an altered stem cell

pool. Therefore, unraveling the mechanisms through which

CSCs drive tumor progression may allow clinicians to interfere

with these processes and ultimately improve CRC treatment.

The Adult Intestine: A Complex Environment Sustained
by Stem Cells
Understanding the mechanisms that regulate intestinal stem

cells (ISCs) is instrumental to gain insights into the biology of their

malignant counterparts. Even if colorectal CSCs may not neces-

sarily derive from normal ISCs, normal and malignant stem cells

can still share several basic signaling pathways (Beck and
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Figure 1. Colorectal CSCs in the Context of Tumor Heterogeneity
Tumor heterogeneity is driven by a combination of genetic, epigenetic, and microenvironmental factors, which all together result in functional diversity at the
individual, clonal, and intraclonal level.
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Blanpain, 2013). However, the vast majority of studies on ISC

biology have focused on stem cells of the small intestine while,

paradoxically, stem cells in the colon are much less character-

ized. The small intestine crypt has been extensively studied

and traditionally considered as the prototype stem cell com-

partment, leading to the identification of functionally different

populations of ISCs (Barker, 2014; Clevers, 2013). Two ISC pop-

ulations, named +4 cells (characterized by prevalent expression

of BMI1, HOPX, TERT, and LRIG1) and crypt base columnar cells

(expressing high levels of LGR5) have both been recognized for

their capacity to self-renew and give rise to all the differentiated

cells of the intestinal epithelium, thus meeting the criteria of

‘‘true’’ stem cells (Barker, 2014; Barker et al., 2012). The two

ISC populations were initially believed to represent distinct

stem cell pools with different functional activities, though ca-

pable of bidirectional interconversion (Takeda et al., 2011).

Proliferating LGR5+ cells were considered to be responsible for

intestinal homeostasis, while quiescent BMI1+ cells were viewed

as a reserve stem cell pool able to regenerate the LGR5+ popu-

lation (Yan et al., 2012). However, the subsequent finding that

LGR5+ cells can also express +4markers including BMI1 (Muñoz

et al., 2012) challenged the distinction between the two ISC pop-

ulations. Subsequent studies largely based on lineage tracing

techniques provided new insights into the nature of the ISC

pool. Actively cycling LGR5+ cells were found to generate a tran-

sient population of quiescent Paneth cell progenitors expressing
both LGR5 and +4 markers, which, in case of injury, acquire the

properties of a functional stem cell population (Buczacki et al.,

2013). Similar observations were made for a population of

LGR5� secretory precursors characterized by expression of

the Notch ligand DLL1, which can regenerate the ISC compart-

ment upon damage (van Es et al., 2012). Although the use of

tamoxifen typically administered in lineage tracing experiments

has been proposed to induce apoptosis of +4 cells and alter

the balance of ISC populations (Zhu et al., 2013), lineage tracing

studies appear to remain a considerable resource for ISC re-

search. In fact, such an approach has been recently used to

define the numbers of functional stem cells in crypts and ade-

nomas (Kozar et al., 2013) and to identify a new subpopulation

of DCLK1+ quiescent cells in the small intestine and colon

(Westphalen et al., 2014). Additional technologies have explo-

ited live imaging of genetically marked ISCs or double LGR5-

GFP;Ki67RFP transgenic mice to investigate stem cell dynamics

in the intestine and highlight the heterogeneous nature of ISCs

(Basak et al., 2014; Ritsma et al., 2014).

As compared to the small intestine, the colon presents

several differences in crypt structure and cell composition.

The colonic crypt does not protrude to form villi at the mucosal

surface, and it does not contain Paneth cells, +4 cells, or BMI1+

cells. The colonic stem cell has been described as LGR5+ or

EphB2high (Barker et al., 2007; Jung et al., 2011) and has

been shown to be capable of generating an entire self-renewing
Cell Stem Cell 15, December 4, 2014 ª2014 Elsevier Inc. 693
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crypt that engrafts the mouse colon (Yui et al., 2012). Slow-

cycling stem cells have also been detected in the colonic crypt

and have been identified by elevated Notch signaling (Hirata

et al., 2013) or LRIG1 expression (Powell et al., 2012) or as a

subpopulation of DCLK1+ tuft cells (Westphalen et al., 2014).

Further studies are needed to fully characterize the mecha-

nisms leading to colonic stem cell transformation, particularly

in light of the high bacteria concentration present in the crypts

and the potential tumorigenic role of microbiota alteration (Song

et al., 2014).

ISCs and the Origin of CRC
The CRC cell of origin likely contributes to intertumoral heteroge-

neity and plays an important role in defining tumor features, as

suggested by the distinct phenotype and clinical features of tu-

mors that develop through theWNT/serrated pathway (De Sousa

E Melo et al., 2013b). Specific activation of the b-catenin

pathway in ISCs expressing LGR5, BMI1, or CD133 results in

adenoma generation, pointing to ISCs as the prevalent cells

of origin of CRC (Barker et al., 2009; Sangiorgi and Capecchi,

2008; Zhu et al., 2009). However, several differences exist be-

tween tumor development in mouse models and that in CRC pa-

tients, suggesting that further factors will have to be taken into

account when describing the origin of CRC. First, the majority

of CRC genetic mouse models lead to the formation of ade-

nomas that rarely progress to full carcinomas (Su et al., 1992;

Taketo and Edelmann, 2009). Second, adenoma formation in

CRC genetic mouse models occurs in the small intestine,

whereas human malignancies appear almost exclusively in the

colon. Third, the development of human CRC is strongly influ-

enced by environmental factors such as chronic inflammatory

conditions (Itzkowitz and Yio, 2004) that are not usually present

in genetically modified mice. Although the complex conditions

underlying CRC development are difficult to recapitulate in

mouse models, significant advancements have been made in

understanding how common genetic mutations in CRC (APC,

P53, and KRAS) influence stem cell dynamics in tumor initiation.

While stem cells in normal crypts continuously replace each

other in a random fashion (Lopez-Garcia et al., 2010), oncogenic

mutations confer an advantage to the clone in which they origi-

nate, which is less subject to replacement by wild-type stem

cells (Snippert et al., 2014; Vermeulen et al., 2013). It is of note

that mutated stem cells do not become deterministically fixed

but are still subject to some stochastic replacement by wild-

type cells, thus rendering the accumulation of mutations a com-

plex process (Vermeulen et al., 2013). This model is supported

by the observation that adenomas appear to be mitotically old

populations in which occasional events may trigger the rapid

growth of aggressive subclones, leading to cancer development

(Humphries et al., 2013). Interestingly, the competition between

normal andmutated stem cells in the crypt has been shown to be

influenced by inflammation: P53 mutated clones do not have a

benefit over wild-type stem cells in normal conditions but tend

to prevail in an inflamed intestine (Vermeulen et al., 2013). These

observations clearly show that both genetic and environmental

factors play a role in CRC initiation by influencing the degree

of stem cell clonal advantage, which follows a trend of constant

increase during tumor progression generating increasingly

competitive CSCs. While, during the early phases of tumor
694 Cell Stem Cell 15, December 4, 2014 ª2014 Elsevier Inc.
growth, competition occurs between normal and neoplastic

stem cells, in more advanced tumors CSC clones compete

with each other, with more aggressive clones emerging as the

combined result of genetic mutations and environmental pres-

sures (including cancer therapy). However, in the highly compet-

itive microenvironment of an advanced tumor, cancer cells may

raise their survival chances not only through an enhanced prolif-

erative ability but also by increasing genetic drift through a

mechanism of segregation (Sottoriva et al., 2011). In this pro-

cess, metastatic CSCs may emerge at the apex of tumor evolu-

tion (Figure 2), not necessarily by virtue of their superior fitness

(strictly defined as the ability to overcome competitor clones)

but rather by their pioneering capacity. It is important to note

that the last step of tumor evolution is always followed by a

reduction in CSC expansion either when the patient undergoes

remission or ultimately succumbs to the tumor. We refer to the

phenomenon by which uncontrolled CSC expansion results in

their ultimate destruction as ‘‘CSC overshoot,’’ which is analo-

gous to what occurs in ecology when a population exceeds

the carrying capacity of its environment. Recently, the concept

of ISCs as the colon cancer cell of origin has been challenged

by studies showing that CRC may arise from more differentiated

cells as the consequence of constitutive NF-kB activation

(Schwitalla et al., 2013). CRC was also shown to arise from a

subpopulation of differentiated quiescent tuft cells positive for

the marker DCLK1 upon combined APC deletion and chemically

induced inflammation (Westphalen et al., 2014). Taken together,

these studies indicate that tumors can originate from both stem

cells and non-stem cells, thus providing an unexpectedly varie-

gated picture of the cell of origin in CRC.

Portrait of a Colorectal CSC: Phenotypic and
Functional Traits
Human colorectal CSCswere first isolated on the basis of CD133

expression and demonstrated to induce tumors in mice that

resembled the original malignancy (O’Brien et al., 2007; Ricci-Vi-

tiani et al., 2007). The search for other surface markers of colo-

rectal CSCs proceeded in hopes of finding a CSC-specific

biomarker, which would greatly facilitate the development of

prognostic and therapeutic tools. Several CSC phenotypes

have been described. However, CSC surface markers identified

so far are expressed also by normal ISCs, preventing their poten-

tial use as therapeutic targets. Markers that have been described

to characterize colorectal CSCs include EphB2high (Jung et al.,

2011), EpCAMhigh/CD44+/CD166+ (Dalerba et al., 2007),

ALDH+ (Huang et al., 2009), LGR5+ (Kemper et al., 2012a), and

CD44v6+ (Todaro et al., 2014). Recently, expression of the

DCLK1 kinase has been proposed to specifically mark CSCs,

but not normal ISCs (Nakanishi et al., 2013), but its intracellular

localization limits its potential therapeutic utility. Many questions

remain open in the field of colorectal CSC identification. First, the

consistency of CSC-associated markers deserves further inves-

tigation, because the CSC phenotype itself has been shown to

be unstable. In fact, it has been demonstrated that CSC po-

pulations that are positive and negative for LGR5 can intercon-

vert upon chemotherapy (Kobayashi et al., 2012). Moreover,

cytokines produced by tumor-associated cells can induce

increased CSC self-renewal (Kryczek et al., 2014; Lotti et al.,

2013; Vermeulen et al., 2010) and reprogram transit-amplifying



Death

CSC 
overshoot

Max

CSC 
eradica�on

xp
an

si
on

Cure

CS
C 

ex

Normal
stem cells

Preneoplas�c
stem cells

Adenoma
stem cells

CSCs Metasta c
CSCs

CSC
ex�n�on

Tumor evolu�on

ns
,

su
re

s
ic

m
ut

a�
on

m
en

ta
lp

re
ss

Ge
ne

ti
en

vi
ro

nm

Figure 2. CSC Expansion versus Tumor Evolution in Colorectal Cancer
The expansion of colorectal CSCs increases during tumor development as the result of genetic mutations and environmental pressures. At an advanced stage,
CSCs expand not only by selecting clones with increased competitiveness but also by colonizing distant tissues (Metastatic CSCs), but this state is necessarily
followed by an extinction of the whole CSC population in case of either therapy success or failure.
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progenitors to CSCs (Todaro et al., 2014). It is thus possible that

the proportions of cells expressing CSC markers may vary de-

pending on tumor stage (because hierarchical organization has

been proposed to be strict in the early stage and relaxed in

advanced tumors; Kreso and Dick, 2014), on the type and timing

of therapy, and finally on a series of microenvironmental and in-

dividual factors that are predictably difficult to define. Therefore,

in a dynamic scenario where CSCs may vary in quantity and

phenotype during tumor progression, the expression of CSC

markers should be seen as a relative and contextual parameter

rather than a general property of the tumor. Besides phenotypic

markers, another way to identify CSCs is throughmolecular and/

or functional features. From amolecular standpoint, the hallmark

of colorectal CSCs has been shown to be a hyperactivated

b-catenin pathway, which translates into the ability to generate

serial tumors in vivo (Vermeulen et al., 2010). Another stem cell

functional trait is self-renewal, which in colorectal CSCs has

been shown to depend on the transcriptional regulators ID1

and ID3 (O’Brien et al., 2012). Recently, the transcriptional re-

gulator BMI1 has also been shown to be a key player of self-

renewal in colorectal CSCs, as its inhibition results in stem cell

loss and impairment of tumor growth (Kreso et al., 2014). Finally,

important insights into the function of colorectal CSCs were ob-

tained by molecular tracking studies, which have the ability to

monitor CSC behavior in an in vivo setting, thus allowing a func-

tional definition of their properties. Such studies demonstrated

the existence of multiple types of colorectal CSCs with different

roles in tumor maintenance and metastasis formation (Dieter

et al., 2011), allowing the field to appreciate a further level of

cellular heterogeneity among the CSC compartment and to

redefine cellular hierarchies in CRC.
Colon CSCs: Elusive or Plastic?
Compelling evidence indicates that stemness is a dynamic state

(Huang, 2009; MacArthur and Lemischka, 2013; Vermeulen and

Snippert, 2014). Such dynamism derives from a pattern of epige-

netic states associated with different propensities for prolifera-

tion, differentiation, and apoptosis, thus producing functional

variability within stem cell populations that results in high adapt-

ability to environmental conditions (Easwaran et al., 2014; Mac-

Arthur, 2014). A fundamental aspect of stem cell dynamics is

plasticity, intended here as the capability of cells to shift between

different functional states including quiescence/proliferation,

drug sensitivity/resistance, symmetric/asymmetric division,

epithelial-mesenchymal transition/mesenchymal-epithelial tran-

sition, and stem/nonstem state (Meacham and Morrison,

2013). CSCs are no exception to this rule: they have been shown

to be plastic with regard to drug resistance, asymmetric division,

and differentiation state. In solid tumors, the interconversion

between CSCs and non-stem cells has been shown to occur in

melanoma, breast cancer, and CRC (Kreso and Dick, 2014). In

particular, colorectal CSCs have been shown to originate from

the dedifferentiation of progenitor cells as a consequence of

enhanced WNT activation driven either by elevated NF-kB

signaling (Schwitalla et al., 2013) or through stimulation by cyto-

kines produced by tumor-associated cells (Kryczek et al., 2014;

Todaro et al., 2014; Vermeulen et al., 2010). It remains to be

elucidated whether the plasticity of colorectal CSC depends

only on extrinsic factors or also on stochastic factors, which

have been shown to play a key role in the interconversion of

CSCs and non-stem cells in breast cancer cell lines (Gupta

et al., 2011). In fact, stochastic variations of gene expression

have been shown to increase cellular fitness in a changing
Cell Stem Cell 15, December 4, 2014 ª2014 Elsevier Inc. 695
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microenvironment (Feinberg and Irizarry, 2010). Therefore, it is

likely that colorectal CSC plasticity may be driven by a combina-

tion of stochastic andmicroenvironmental variations, thus result-

ing in an efficient adaptation strategy at the population level

(MacArthur, 2014; Vermeulen and Snippert, 2014). An exacer-

bated plasticity, as compared to that of normal stem cells, may

in fact represent a strategy exploited by colorectal CSCs to

enhance their adaptation potential. While normal stem cells

respond to challenges by attempting to restore homeostasis

through tissue regeneration, CSCs may react to challenges by

increasing in number and adopting a more aggressive pheno-

type. This behavior has previously been hypothesized andmath-

ematically inferred (Harless, 2011; Sottoriva et al., 2011). Indeed,

CSC numbers have been shown to increase after chemotherapy

or irradiation, both in CRC and in other tumors (Dylla et al., 2008;

Hu et al., 2012; Lee et al., 2011). Quiescent CSCs are spared by

cytotoxic therapies, which usually result in a relative increase in

tumor stem cell content, due to the selective survival of the CSC

fraction. Moreover, after initially targeting proliferating CSCs,

multiple cycles of chemotherapy may promote CSC proliferation

(Francescangeli et al., 2012) and self-renewal (Hu et al., 2012;

Lee et al., 2011; Lotti et al., 2013). Besides chemotherapy, tar-

geted therapies that partially or totally ablate the CSC pool

may have to face the problem of CSC regeneration due to the

ability of non-stem cells to recreate CSCs. In an even worse sce-

nario, targeted therapies may elicit a reactive response resulting

in the resurgence of more aggressive tumors. During or after

therapy, CSCs with new functional properties may be generated

under the pressure of microenvironmental signals or as a conse-

quence of genetic mutations responsible for drug resistance

(Sottoriva et al., 2011). Taking into account the interconversion

of CSCs and transit-amplifying progenitors, the stochastic selec-

tion of more aggressive clones may occur at both levels. Thus,

the CSC model and the stochastic model could be integrated

by taking into consideration the cancer progenitor pool, which

may be regarded as a reservoir of the CSC compartment.

Although CRC progenitors do not self-renew or migrate to met-

astatic sites (Todaro et al., 2014), a permissive microenviron-

ment may foster their conversion into CSCs that are able to

contribute tominimal residual disease andmetastasis formation.

A possible solution for avoiding posttherapy regeneration of

CSCs would be to combine CSC-targeted therapies with drugs

that inhibit either microenvironmental or epigenetic mechanisms

responsible for the reprogramming of transit-amplifying progen-

itors into CSCs. Interfering with tumor cell plasticity may there-

fore offer new tools to support the activity of both conventional

and targeted anticancer drugs.

Signaling Pathways Implicated in the Regulation of
Colorectal CSCs
The comprehension of signaling pathways active in normal ISCs

has advanced tremendously in recent years. By contrast, the

knowledge of how such pathways are deregulated in colorectal

CSCs is still in its infancy. Here, we will focus on three pathways

that are emerging as key players of colorectal CSC regulation:

the WNT pathway, the BMP pathway, and the Notch pathway.

WNT growth factors play a prominent role in the regulation of

normal and malignant stem cell maintenance (Clevers, 2006). In

CRC, 90% of tumors bear a mutation in APC or another key reg-
696 Cell Stem Cell 15, December 4, 2014 ª2014 Elsevier Inc.
ulatory factor of the WNT/b-catenin pathway, resulting in the

enhanced transcription of WNT target genes (Kinzler and Vogel-

stein, 1996). However, the dysregulation of b-catenin levels is not

sufficient for CRCs to develop. Other events such as additional

mutations, epigenetic silencing, microenvironmental signals, or

pathway crosstalk are necessary to generate the nuclear levels

of b-catenin that confer tumorigenic activity (Fearon, 2011). In

fact, colorectal tumors harboring activating mutations in the

WNT/b-catenin pathway show variable levels of WNT pathway

activation. Only cells with the highest levels of WNT pathway

activation actually display nuclear localization of b-catenin and

possess CSC properties (Vermeulen et al., 2010). Additional ge-

netic mutations can contribute to hyperactivate the WNT/b-cat-

enin pathway in cells that already have basal dysregulation of

b-catenin activity due to APC mutation. A KRAS mutation has

been recently shown to hyperactivate the WNT/b-catenin

pathway in the genetic background of APC loss, generating cells

with a CSC phenotype and an increased metastatic potential

(Moon et al., 2014). Additionally, WNT/b-catenin pathway activa-

tion can be positively or negatively influenced by other morpho-

genetic pathways such as the Notch, Hedgehog, PI3K, and BMP

pathways (He et al., 2004; Kwon et al., 2011; Todaro et al., 2014;

van den Brink et al., 2004), likely resulting in a fine-tuning of the

CSC compartment. A meaningful example of how multiple path-

ways cooperate with APC loss to drive stem cell expansion in

CRC is provided by recent studies on the role of the reactive ox-

ygen species (ROS), which have been shown to connect the

small GTPase Rac1 with the NF-kB pathway, allowing the initia-

tion of colon tumorigenesis (Myant et al., 2013). Increased ROS

levels that are found at the crypt base likely play an important, yet

largely unknown, role in the regulation of both ISCs and their

transformed counterparts.

Recently, new potential clues regarding CSC regulation have

been unraveled by showing the intersection of the WNT pathway

with the Hippo pathway, the latter being a key regulator of organ

size control and mechanotransduction. The Hippo transducers

YAP/TAZ have been shown to be integral components of the

b-catenin cytoplasmic destruction complex and their translo-

cation into the nucleuswas shown to be essential forWNT/b-cat-

enin signaling in cells where the WNT pathway is activated

(Azzolin et al., 2014). YAP/TAZ regulation of the ISC compart-

ment appears to be complex: YAP has been demonstrated to

act either as an oncogene or a tumor suppressor in the colon

(Barry et al., 2013; Camargo et al., 2007). In colorectal CSCs,

the specific role of YAP/TAZ is unknown, but TAZ has recently

been demonstrated to confer CSC traits and chemoresistance

in breast cancer (Bartucci et al., 2014; Cordenonsi et al., 2011).

This finding, together with the observation that YAP/TAZ is not

essential in homeostatic conditions but plays an essential role

during intense intestinal proliferation (Azzolin et al., 2014; Cai

et al., 2010), depicts a scenario wherein YAP/TAZ may be also

involved in the expansion of colorectal CSCs.

While WNT signaling prevails at the crypt base where it sup-

ports ISC proliferation, TGF-b/BMP signals predominate at the

open end of the crypt, where they promote cell differentiation

and apoptosis at least in part by counteracting WNT/b-catenin

effects (He et al., 2004; Kosinski et al., 2007). In spite of their

highly compartmentalized and orderly activity in the normal

colon, the WNT/b-catenin and the TGF-b pathways are



Figure 3. Schematic Model of the Stem Cell
Niche in Normal Colon and CRC
ISCs, intestinal stem cells; CAF, cancer-associ-
ated fibroblast; DLL, Delta-like ligand; EGF,
epidermal growth factor receptor; HGF, hepato-
cyte growth factor; PGE2, prostaglandin E2; OPN,
osteopontin; SDF1a, stromal-cell-derived factor
1-alpha; IL, interleukin.
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subverted in CRC and can act synergistically to promote colo-

rectal tumorigenesis (Takaku et al., 1998). The TGF-b superfamily

members, BMPs, have been shown to play a key role in the regu-

lation of normal and neoplastic ISCs. BMPR1 intestinal condi-

tional knockout mice develop multiple intestinal polyps due to

enhanced WNT signaling and stem cell proliferation (He et al.,

2004). Among the BMP family, BMP2 and BMP4 have been spe-

cifically involved in colorectal CSC regulation by promoting CSC

differentiation and antagonizing the WNT/b-catenin signaling

(Lombardo et al., 2011). Recently, the transcription factor

GATA6 has been identified as a key regulator of the WNT and

BMP pathways in the neoplastic colon. In adenomas, which are

hierarchically similar to CRC (Merlos-Suárez et al., 2011;

Vermeulen et al., 2010), GATA6 has been found to be a direct

regulator of LGR5 expression and its knockdown in an APC null

background was able to suppress colon tumorigenesis. Mecha-

nistically, GATA6 promoted CSC expansion and self-renewal

through the repression of BMP gene expression by competing

withb-catenin/TCF4 tobind to a regulatory regionof theBMP4 lo-

cusand thus loweringBMPsignaling (Whissell et al., 2014). These

findings provide novel and important insights on how the BMP

pathway suppresses CSC self-renewal and unveil a new link be-

tween the WNT and BMP pathways, contributing to deciphering

the interplay of events responsible for colorectal CSC regulation.

Notch is another relevant actor in the control of colorectal

CSCs. Notch signaling is required for the homeostasis of normal

mouse ISCs (Pellegrinet et al., 2011; van Es et al., 2005). In can-

cer, inhibition of the Notch pathway, and specifically of the Delta-

like 4 ligand (DLL4), has been shown to reduce CSC frequency

and enhance chemosensitivity (Hoey et al., 2009). Levels of

Notch signaling have been shown to be particularly elevated in

colorectal CSCs, where they prevent apoptosis and contribute

to maintenance of an undifferentiated state (Sikandar et al.,

2010). Recently, the Notch pathway has emerged as a regulator

of cell fate in colorectal CSCs, acting through microRNA-medi-

ated circuits that control the rates of symmetric versus asym-

metric cell division. In fact, it was demonstrated that different
Cell Stem Cell 15,
levels of miR-34a define the cell division

modality of colorectal CSCs by targeting

Notch1 (Bu et al., 2013). Interestingly,

early-stage colorectal CSCs express

high levels of miR-34 that sequester

Notch1 mRNA, thus balancing asym-

metric and symmetric divisions, whereas

late-stage CSCs lose this regulation and

undergo prevalent self-renewing divi-

sions. Subsequent studies pointed in

the same direction, showing the exis-

tence of a signaling axis involving Snail,

miR-146a, and the Notch inhibitor Numb
that act in concert to tune WNT signaling, which in turn regulates

self-renewing divisions and stem cell expansion (Hwang et al.,

2014). Altogether, these studies depict an increasingly complex

picture of signaling pathways active in colorectal CSCs.

A Dynamic Niche for Colorectal CSCs
The microenvironment has enormous power in determining the

fate and function of cancer cells. In an extreme situation, the

microenvironment can even reprogram cancer cells to normalcy,

as was first shown by the observation that embryonic carcinoma

cells produce teratocarcinomas when injected subcutaneously

in mice whereas they generate normal chimeric mice when in-

jected into a blastocyst (Mintz and Illmensee, 1975). In CRC,

the microenvironmental control of cancer cells is strongly sup-

ported by the fact that chronic inflammation favors tumor devel-

opment (Itzkowitz and Yio, 2004) and is strongly related to the

regulation of the CSC pool (Medema and Vermeulen, 2011).

The tumor microenvironment is composed of nonmalignant cells

such as endothelial cells, fibroblasts, and immune cells and a

noncellular matrix composed of proteoglycans, hyaluronic

acid, and fibrous components. The different tumor-associated

cells together with the extracellular matrix form the supportive

framework of the tumor, or tumor stroma. Predictably, the

stroma is not a static scaffold but undergoes dramatic changes

during tumor progression and has been shown to play an active

role in influencing tumor growth and chemoresistance (Egeblad

et al., 2010; Junttila and de Sauvage, 2013). The specialized

microenvironment responsible for stem cell maintenance repre-

sents the stem cell niche, which for normal ISCs is reportedly

represented by Paneth cells in the small intestine and by a sub-

population of cKIT+ goblet cells in the colon (Rothenberg et al.,

2012; Sato et al., 2011b). Since in CRC crypt organization is sub-

verted, colorectal CSCs cannot count on a traditional supportive

niche and lie within a much more anarchic environment com-

posed of multiple cell types that provide them with noncanonical

signals (Figure 3). Crucially, signals provided by the colorectal

CSC niche have been demonstrated to play a key role in defining
December 4, 2014 ª2014 Elsevier Inc. 697
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the CSC state and are responsible for the induction of CSC

phenotype and function. The initial work of Vermeulen et al.

(2010) demonstrated that HGF released by cancer-associated fi-

broblasts (CAFs) activated b-catenin-dependent transcription

and self-renewal in colorectal CSCs. Moreover, HGF was able

to induce the CSC phenotype in more differentiated tumor cells,

providing the first compelling evidence of CSC plasticity (Ver-

meulen et al., 2010). Subsequent discoveries further expanded

the concept of niche as a key determinant of CSC properties,

identifying a plethora of functional factors released by different

subsets of tumor-associated cells. Endothelial cells were shown

to promote the CRC stem cell phenotype through production of

the Notch ligand DLL1 and activation of Notch signaling (Lu et al.,

2013). In this case, colorectal CSCs were shown to reside in the

perivascular regions of human colon tumors, similarly to what

occurs in glioblastoma. Mesenchymal cells belonging to the tu-

mor stroma have been proposed to contribute to the CSC

phenotype by secreting prostaglandin E2 and cytokines that

induce b-catenin activation and CSC formation (Li et al., 2012).

CAFs have recently been shown to promote reprogramming

of CRC progenitors into CSCs through the release of HGF,

OPN, and SDF1 (Todaro et al., 2014). Even immune cells, and

specifically CD4+ T cells, have been shown to influence the

self-renewal of colorectal CSCs through secretion of IL-22 and

activation of the DOT1L methyltranferase responsible for the

transcription of stem-cell-associated genes (Kryczek et al.,

2014). In agreement with a dynamic view of the CSC niche,

CAFs have been shown to secrete specific cytokines and che-

mokines upon chemotherapy treatment, including IL-17A, which

increased colorectal CSC self-renewal and invasion (Lotti et al.,

2013). Importantly, the latter observation indicates that chemo-

therapy induces a remodeling of the tumor microenvironment

promoting an aggressive evolution of the CSC population. It

can be predicted that many other studies will follow on how

the microenvironment influences CSC dynamics and functions,

possibly exposing weak points in CSC survival strategy that

could be exploited therapeutically.

Stemness andMetastasis: Two Faces of the SameCoin?
The clues that link CSCs and metastasis are numerous and

compelling, beginning with the evidence that only cancer cells

with the attributes of tumor-initiating cells can succeed in form-

ing a new tumor at a distant site. An initial report suggested that a

subpopulation of CSCs expressing CD26 was responsible for

the development of CRC metastasis (Pang et al., 2010). Later,

the hypothesis of an overlap between metastatic cells and

CSCs was supported by two key studies based on the clonal

analysis of lentivirally marked tumor cell populations, showing

that metastases arise from a subpopulation of cells present in

the primary tumor. These cells were quiescent, resistant to

chemotherapy, and endowed with long-term self-renewal ca-

pacity, thus possessing typical CSC features (Dieter et al.,

2011; Kreso et al., 2013). A relevant question concerns the po-

tential ability of colorectal CSCs to colonize different organs,

which could be part of a stochastic dissemination or a mole-

cularly driven process. A recent report showed that only CSCs

expressing the thrombopoietin receptor (CD110) are able to

colonize the liver, while the expression of the CUB-domain-con-

taining protein 1 (CDCP1) is associated with the propensity to
698 Cell Stem Cell 15, December 4, 2014 ª2014 Elsevier Inc.
make lung metastasis (Gao et al., 2013). Thrombopoietin pro-

duction by hepatocytes increases the self-renewal of CD110+

CSCs and allows their extravasation into the liver parenchyma,

while CDCP1+ CSCs seem to home preferentially to the lung

microvascular endothelium (Gao et al., 2013). Notably, both

CD110+ and CDCP1+ CRC cells were included in the CD133+

population and possessed the functional properties of CSCs.

Although both CD110 and CDCP1 are negatively correlated

with patient outcome and may be used as prognostic bio-

markers, genetic and epigenetic events driving their differential

expression and the consequent metastatic proclivity are still un-

clear.

While it appears intuitive that the tumor cells able to initiate

metastases should be CSCs, until recently it was unclear

whether all colorectal CSCs were able to form metastases. For

a long time, it seemed reasonable that the acquisition of specific

genetic mutations would account for the emergence of metasta-

tic potential in CSCs. However, a comparison of primary colo-

rectal tumors and matched metastases found no mutations

that were specifically and consistently associated with metas-

tasis (Jones et al., 2008). On the other hand, increasing evidence

suggests that mutations in epigenetic regulators or in genes that

control them through metabolic pathways favor the emergence

of altered states that provide cancer cells with an increased

adaptability to environmental pressures (Oskarsson et al.,

2014). Therefore, the genetics of the primary lesion, together

with epigenetic and microenvironment components, jointly

dictate the metastatic features of single tumors. In this context,

TGF-b has been shown to play a key role in the interactions be-

tween metastatic tumor cells and the microenvironment in CRC.

Although TGF-b acts as tumor suppressor during the initial trans-

formation, it plays a predominant oncogenic role during tumor

progression. This switch seems to occur after the acquisition

of additional mutations, such as P53 (Adorno et al., 2009) or

SMAD4 (Zhang et al., 2010). In advanced tumors, increased

TGF-b levels are associated with poor disease outcome due to

the induction of a prometastatic program activated by crosstalk

between tumor cells and stromal cells, which results in increased

survival of metastatic cells and organ colonization (Calon et al.,

2012). Furthermore, it seems likely that CRC cells capable of initi-

ating metastasis possess the capacity to raise TGF-b levels in

the environment by either secreting TGF-b or recruiting TGF-

b-producing cells such as macrophages, CAFs, or platelets

(Calon et al., 2012). The metastasis-initiating cells in CRC have

been phenotypically identified as cells expressing CD44v6, a

coreceptor for MET (Todaro et al., 2014). The formation of met-

astatic colorectal CSCs is counteracted by BMPs, which induce

CSC differentiation and loss of both CD44v6 and metastatic po-

tential. In contrast, cytokines that activate PI3K and increase the

activation of b-catenin, such as HGF, SDF1, and OPN, turn non-

metastatic progenitors into metastatic CSCs (Todaro et al.,

2014), in line with clinical data showing the requirement of

concomitant PI3K and b-catenin activation for metastasis forma-

tion in CRC (Ormanns et al., 2014). Both constitutive and reprog-

rammed colorectal CSCs express CD44v6 and display epithe-

lial-mesenchymal transition genes that collectively contribute

to enhance cell motility, invasiveness, and metastatic potential

of CSCs (Todaro et al., 2014). Such antagonism between

BMPs and the PI3K/b-catenin pathway has been proposed to
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be altered in tumors with SMAD4mutations, which in NCI60 cell

linesmay turn the tumor suppressor activity of BMPs into metas-

tasis-driving signals through the activation of the ROCK pathway

(Voorneveld et al., 2014). However, we found that BMP4 pro-

motes the differentiation of primary colorectal CSCs regardless

of SMAD4 status (Lombardo et al., 2011), suggesting that addi-

tional investigations are required to understand BMP signaling

and the role of SMAD4 mutations in these cells. Finally, the ho-

meobox transcription factor PROX1 has been recently proposed

as an essential player ofmetastaticCSCexpansion (Wiener et al.,

2014). PROX1 contributes to the metabolic adaptation of colo-

rectal CSCs to an unfavorable microenvironment by sustaining

autophagy, which has been previously shown to be essential

for the survival ofCRCcells (Ragusaet al., 2014;Satoet al., 2007).

Potential Relevance of Colorectal CSCs for Tumor
Prognosis and Therapy
Recent studies on the molecular signatures of colorectal CSCs

point to a strong link between levels of CSC-associated genes

and patient outcome. In accordance to what was shown for

breast and other tumors, a ‘‘stemness’’ signature was shown

to predict disease relapse in CRC patients (Giampieri et al.,

2013; Merlos-Suárez et al., 2011). In contrast to the clear signif-

icance of CSC-associated molecular profiles, the expression of

CSC surfacemarkers as predictors of patient outcome is contro-

versial. A meta-analysis evaluating 15 studies found that high

CD133 expression was actually an independent prognostic

marker for both overall survival and disease-free survival (Chen

et al., 2013) whereas, conversely, LGR5 expression may be un-

related to patient prognosis (Ziskin et al., 2013). Additionally,

germline polymorphisms in the CSC-associated genes LGR5,

CD44, and ALDH1A1 seem to define a subset of stage II and

stage III patients with a significantly shorter recurrence time

(Gerger et al., 2011). CSCs represent an attractive target for

more effective therapies against CRC. A number of reports

have shown that colorectal CSCs display an intrinsic tendency

toward chemoresistance and may be responsible for tumor

regeneration and relapse after conventional therapy (Colak

et al., 2014; Dylla et al., 2008; Lombardo et al., 2011; Lotti

et al., 2013). Direct CSC targeting can be achieved by inhibiting

self-renewal pathways, by interfering with vital antiapoptotic or

metabolic pathways, by activating differentiation pathways, or

by acting on the protective microenvironment. Several potential

anti-CSC targeted drugs have emerged in past and recent

studies, some of which are making their way to the clinic (Table

S1 available online). In past studies, blocking IL-4 autocrine pro-

duction led to CSC sensitization to drug-induced death by

lowering the levels of antiapoptotic proteins (Todaro et al.,

2007), while inhibition of the Notch pathway was able to reduce

CSC frequency (Hoey et al., 2009). Subsequently, a screening of

kinase inhibitors identified Polo-like kinase 1 as a therapeutic

target required for the survival of proliferating colorectal CSCs

(Francescangeli et al., 2012). More recently, mitochondrial tar-

geting agents have been shown to increase the efficacy of

chemotherapy (Colak et al., 2014) and target quiescent colo-

rectal CSCs (Zhang et al., 2014), which are particularly difficult

to eradicate (Francescangeli et al., 2012). Finally, promising early

clinical data with WNT-targeting agents are emerging (Le et al.,

2014). These agents may have an anti-CSC activity similar to
that of BMPs, which appear as strong endogenous and exoge-

nous CSC inhibitors in CRC (Lombardo et al., 2011; Todaro

et al., 2014) and may potentiate the antitumor activity of chemo-

therapy, provided that the protumor cytokines are not largely

diffused in the niche. In summary, it appears increasingly clear

that the size of the CSC compartment in CRC can be regulated

by the relative proportions of pro-CSC and anti-CSC factors

(Figure 4).

Currently, most of the interventional clinical trials are carried

out on metastatic patients with the aim to temporarily control

tumor progression. However, with the increasing knowledge

of colorectal CSC biology, several therapeutic options are

becoming available. The effectiveness of CSC-targeted thera-

pies may be maximal on CSCs disseminated outside the tumor

context, which may be vulnerable to combined therapies due

to the absence of a protective niche. In fact, a partial targeting

of disseminated CSCsmay be empirically carried out in the clinic

during adjuvant treatment. Although there is no formal proof that

CSCs can be effectively targeted in CRC patients, it is extremely

likely that adjuvant chemotherapy can kill disseminated CSCs

that escape surgery. This would explain why there is a statisti-

cally significant curative advantage in the administration of adju-

vant therapy in stage II and III patients. An example of the need to

target CSCs in the right clinical setting may be represented by

the PI3K/AKT pathway. Although previous clinical studies indi-

cated a low efficacy of PI3K/mTOR inhibitors as single agents

in advanced patients (Janku et al., 2014), the same treatment

in a more appropriate setting may have a considerably higher

success. Based on experiments with cell lines overexpressing

b-catenin and FOXO3a, it has been proposed that, in the subset

of tumors with upregulation of both genes, PI3K inhibition can

promote CRC cell migration rather than antitumor activity

(Tenbaum et al., 2012). However, we subsequently found that

colorectal CSCs have a constitutive activation of b-catenin and

PI3K/AKT pathways and die in vitro upon PI3K inhibition. More-

over, we observed that in mice carrying primary orthotopic

tumors, treatment with PI3K inhibitors considerably reduces

metastasis formation (Todaro et al., 2014). Our data are in line

with recent clinical observations showing that in CRC the meta-

static activity of b-catenin depends on PI3K activation (Ormanns

et al., 2014). Thus, it is likely that the combination of anti-CSC

agents and chemotherapy could be significantly more effective

than the standard treatment, particularly when disseminated

CSCs are targeted in the adjuvant setting (Figure 5).

A crucial issue in translating CSC discoveries into the clinics is

the development of suitable tools used to assess the efficacy of

CSC-directed therapies in CRC patients. In fact, both in humans

and in mice, reduction of tumor volume is not informative of ther-

apy efficacy on the CSC pool and, by contrast, may prelude the

development of a more aggressive CSC-driven tumor. More-

over, the traditional structure of phase I/II clinical trials, which

are conducted on advanced metastatic and heavily treated pa-

tients, may not be suitable to investigate the activity of new

CSC-targeted drugs. In fact, in the context of advanced tumors

the hierarchical structure dominated by CSCsmay be lost (Kreso

and Dick, 2014) and the protective effects of the tumor microen-

vironment may heavily interfere with targeted drugs. Besides

these potential issues, there is also a need for methods suitable

to evaluate therapy efficacy on the CSC population. These
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approaches may include detection techniques based on the

evaluation of CSC phenotypic traits, which would be easily

manageable and suitable also to evaluate circulating CSCs.

However, it should be kept in mind that CSC markers appear

to vary both with time and among different patients, possibly be-

ing context dependent and related to the type and mutational

profile of the tumor cell of origin. Therefore, it would be prefer-

able to establish clinical endpoints related to CSC function in or-

der to evaluate therapy efficacy on the CSC population in clinical

trials. One potential CSC-related endpoint would be evaluating

the formation of newmetastases in stage IV patients, particularly

in those who underwent hepatic metastasis resection and may

benefit significantly from subsequent treatment with CSC-tar-

geted drugs. Therefore, administration of therapeutic CSC-tar-

geting molecules in the appropriate clinical setting appears to

be a path worth pursuing. However, for this to be possible, an

increased understanding of CSC biology should proceed in

conjunction with a CSC-oriented planning of clinical trials.

Limitations of Preclinical Models: Current Evidences
and Pitfalls
Methods used to isolate and expand colorectal CSCs strongly

influence our knowledge of this cell population. For this reason,

it is important to clarify as much as possible the limitations and
700 Cell Stem Cell 15, December 4, 2014 ª2014 Elsevier Inc.
possible biases associated with different culture methods. This

is particularly important for colorectal CSCs, which can be

expanded relatively easily in vitro and in vivo. Commonly used

methods to expand colorectal CSCs are represented by multi-

cellular spheroid cultures (MSCs) and organoid cultures (OCs)

in vitro and by xenografts in vivo. The latter can be obtained

either by inoculating mice with dissociated CSCs to obtain sub-

cutaneous or orthotopic (colonic) tumors or by subcutaneously

transplanting primary tumor fragments to produce patient-

derived xenografts (PDXs, also called ‘‘xenopatients’’).

Spheroid cultures of cells derived from primary or metastatic

tumors have been widely used to isolate and expand colorectal

CSCs (Dieter et al., 2011; Ricci-Vitiani et al., 2007; Todaro et al.,

2007; Vermeulen et al., 2010). MSCs represent a convenient

method to obtain large numbers of colorectal CSCs suitable

for experimental purposes, for banking, and as a reservoir for

in vivo experiments. However, many scientists rely on the use

of conventional cell lines instead of primary samples as starting

material for MSCs. Such cells underwent a number of passages

in vitro and may be extremely different from those growing in pa-

tient tumors. There is a vast amount of scientific data continu-

ously produced using these models, which may easily contain

artifacts and lead to unreliable conclusions. Moreover, it is

possible that the growth of MSCs is influenced by the presence
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of specific driver mutations, possibly depending on culture con-

ditions used by different investigators. In fact, the efficiency of

successfully isolating colorectal CSC spheroids from surgical

specimens is relatively low, being around 30% (Ricci-Vitiani

et al., 2007), and factors that favor the selection of MSC-gener-

ating cells remain largely unknown.

The generation in vitro of 3D crypt-like structures called orga-

noids has been exploited for growing normal and neoplastic ISCs

(Sato et al., 2009, 2011a). Organoids have been recently shown

to be amenable to the introduction of oncogenicmutations, mak-

ing them a candidate for the model of choice for the study of

genetic alterations associated with CRC development (Li et al.,

2014). However, some limitations may still exist. KRAS and

P53 mutations have been recently correlated with the efficiency

of OC development (Li et al., 2014). Moreover, OCs, similarly to

MSCs, contain only a minority of stem cells. Selective expansion

of the stem cell fraction in normal intestinal cell cultures has been

recently achieved through the use of two small molecules, val-

proic acid and a GSK-3 inhibitor. In such conditions, LGR5+ cells

have been reported to grow as spherical colonies maintaining a

high purity and self-renewal capacity (Yin et al., 2014).

Subcutaneous CSC-derived tumor xenografts have been

broadly used for preclinical tests of new therapeutic agents.

However, the technology for orthotopic implantation of CSCs

is now available (Todaro et al., 2014) and offers the significant

advantage of generating spontaneous lung and livermetastases.

The generation of PDX platforms has also emerged as a reliable

method for preclinical drug testing that preserves the individual

diversity and the genetic heterogeneity typical of the tumors of

origin (Bertotti et al., 2011). Moreover, PDXs also give rise to

distant metastases (Puig et al., 2013). However, similarly to pri-

mary CSC cultures, PDXmay also be influenced by the presence
of specific mutations, as suggested by the fact that some inves-

tigators obtained a strong enrichment of PDX from KRAS-

mutated tumors (Puig et al., 2013). The major limitation of all

the in vivo methods for growing colorectal tumors concerns

the xenogenic network of signals surrounding the tumor,

because mouse and human microenvironments may impact

differently on CSC behavior. Moreover, the absence of lympho-

cytes and related cytokines may reduce the predictive capacity

of such preclinical models, which would appear more solid if

complemented by experiments with transgenic models recapit-

ulating the human disease.

A major area of debate has been the quantification of CSCs,

both in terms of functional assays and markers for identification.

The minimal frequency (1 in 57,000) of colorectal CSCs initially

hypothesized based on transplantation efficiency (O’Brien

et al., 2007) does not appear to be realistic in light of subsequent

studies, which showed that CSC frequency in solid tumors is

generally much higher and that current assays have a number

of limitations (Quintana et al., 2008). An apparently solid marker

such as CD133 has been criticized, possibly due to the absence

of mRNA downregulation after colorectal CSC differentiation

(Kemper et al., 2010). In general, the study of CSCs for clinical

evaluation in the context of prognostic analysis and biomarkers

for supporting therapy decisions suffers from the controversy

generated by conflicting data, particularly on CSC markers. A

possible explanation could be that genetic and epigenetic differ-

ences impact CSC marker expression (Kemper et al., 2012b),

which may differ from sample to sample. The picture is further

complicated by the ability of cancer progenitors and stem cells

to interconvert from the pressure of the microenvironment. An

increased availability of CSC-related information directly derived

from CRC patients will be instrumental to fully understand the
Cell Stem Cell 15, December 4, 2014 ª2014 Elsevier Inc. 701
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limitations of current experimental models and to solve the con-

troversies.

Concluding Thoughts
CRC is one of the most compelling examples of a hierarchically

organized solid cancer dominated by a subpopulation of imma-

ture cells with peculiar molecular and functional features. How-

ever, initial assumptions on the nature of colorectal CSCs are

progressively falling apart, making space for a new view where

stemness arises from the continuous adaptation of cancer cell

populations to microenvironmental signals. Increasing evidence

suggests that, in both the normal and neoplastic intestine, stem-

ness results from the incessant convergence of cell-intrinsic

features (genetic mutations and epigenetic regulation), local

signals (of a chemical, mechanical, and molecular nature), sto-

chastic events, and population forces that continuously shape

the stem cell pool. In this scenario, the future development of

successful clinical strategies will be tightly linked to a deeper un-

derstanding of the dynamic, adaptable, and evolving nature of

colorectal CSCs.
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